

REACTORS - Design, Analysis and Scale-up Example Class Syllabus

Section 1: General Introduction

Section 2: Reactors

- Reactor Types
- Advantages and Disadvantages
- Reactor Selection
- Applications

Section 3: Reactor Design

- Part 1 (Design)
 - Flow Regimes
 - Pressure Drop
 - Catalyst Distribution (number of catalyst beds/individual bed lengths)
 - Catalyst Loading
- Part 2 (Performance-Hydrodynamic Parameters)
 - Liquid Hold-up
 - Liquid Distribution
 - Catalyst Contacting Efficiency
 - Liquid Residence Time Distribution
- Part 3 (Performance-Kinetic Parameters)
 - Reaction Kinetics
 - Reactor Temperature Profiles
 - Mass Transfer/Heat Transfer

Section 4: Reactor Scale-up

- Pilot Plant/Commercial Reactor Differences
- Scale-Up Strategies, Simple to Complex
- Laboratory Reactors

Section 5: Modeling

- Hydrocracker Reactor Model
- Reactor Model Description
- Lumped Reaction Chemistry
- Model Validation
- Simulations of Reactor Performance

1670 Alvarado St., Ste. 3 San Leandro, CA 94577 Phone: 510-351-9911

Section 6: Reactor Internals

- Components and Functions
- Performance Requirements
- Design Criteria
- Flow Distribution
- Quenching and Mixing

Section 7: Cold Flow Modeling

- Benefits and Limitations
- Scale-Up Data
- Lessons Learned

Section 8: Reactor Safety

- Temperature Excursion/Temperature Runaway
- Safe Design and Operating Guidelines
- Stability Criteria
- Catalyst Loading and Preparations
- General Emergency Guidelines

Section 9: Troubleshooting

- High Reactor Pressure Drop
- Pressure Drop Buildup During Operating Cycle
- Pressure Pulsing of the Reactor
- Channeling
- Flow Maldistribution
- Temperature Maldistribution
- Quench Efficiency
- Low Initial Catalyst Activity
- Loss of Catalyst Activity
- Low Temperature Response